FOR Loops - Reading

We often want to repeat a loop a certain number of times. WHILE loops can do this — however, FOR
loops are made for this task. FOR loops differ quite a lot in the syntax in different languages, but
they all perform in a similar way to that shown below.

FOR 1 <« 1 TO 10
OUTPUT 1
ENDFOR i

The output from this loop willbe: 123456789 10.

Normally we use descriptive names for variables. In FOR loops where we are just using a variable
name for an iterator, we use ‘i' and then ‘j’, ‘k’ if there are nested loops. For example:

FOR 1 « 1 TO 12

FOR § « 1 TO 12
OUTPUT i * j
ENDFOR
ENDFOR

This loop will output every times table from 1x1 up to 12x12.
We can change what happens to the iterator variable (i) at the end of each iteration by using STEP.

FOR 1 <« 1 TO 10 STEP 2
OUTPUT str (i)
ENDFOR

The output from this loop willbe: 13579
This is because i is now being increased by 2 each iteration. The next iteration would be 11, but we
are only looking for values 1 TO 10 so this is not included.

The value of the STEP can also be negative. This allows the program to count down.

FOR 1 « 10 TO 1 STEP -1
OUTPUT 1
ENDFOR

The output from this loop will be: 10987654321

Wherever possible you should try to use variables rather than typing the numbers directly into a FOR
loop. This will make your code more readable. Rewriting the loops for times tables would look like
this:

maxTimesTable « 12
numberOfRows « 12
FOR 1 « 1 TO maxTimesTable
FOR j <« 1 TO numberOfRows
OUTPUT i * J

ENDFOR
ENDFOR

Licensed to knole Academy, #10193259 35



