

FOR i  1 TO 10

 OUTPUT i

ENDFOR i

FOR i  1 TO 12

 FOR j  1 TO 12

 OUTPUT i * j

 ENDFOR

ENDFOR

FOR i  1 TO 10 STEP 2

 OUTPUT str(i)

ENDFOR

FOR i  10 TO 1 STEP -1

 OUTPUT i

ENDFOR

maxTimesTable  12

numberOfRows  12

FOR i  1 TO maxTimesTable

 FOR j  1 TO numberOfRows

 OUTPUT i * j

 ENDFOR

ENDFOR

We often want to repeat a loop a certain number of times. WHILE loops can do this – however, FOR
loops are made for this task. FOR loops differ quite a lot in the syntax in different languages, but
they all perform in a similar way to that shown below.

The output from this loop will be: 1 2 3 4 5 6 7 8 9 10.

Normally we use descriptive names for variables. In FOR loops where we are just using a variable
name for an iterator, we use ‘i' and then ‘j’, ‘k’ if there are nested loops. For example:

This loop will output every times table from 1×1 up to 12×12.

We can change what happens to the iterator variable (i) at the end of each iteration by using STEP.

The output from this loop will be: 1 3 5 7 9
This is because i is now being increased by 2 each iteration. The next iteration would be 11, but we
are only looking for values 1 TO 10 so this is not included.

The value of the STEP can also be negative. This allows the program to count down.

The output from this loop will be: 10 9 8 7 6 5 4 3 2 1

Wherever possible you should try to use variables rather than typing the numbers directly into a FOR
loop. This will make your code more readable. Rewriting the loops for times tables would look like
this:

FOR Loops - Reading R 18

35Licensed to knole Academy, #10193259

