

scores ← [34, 23, 124, 843,
334, 234, 123, 436, 847, 338]

FOR i ← 0 TO 9
 OUTPUT scores[i]
ENDFOR

FOR i ← 0 TO 9
 scores[i] ← scores[i] * 100
ENDFOR

totalScore ← 0
FOR i ← 1 TO 9
 totalScore ← totalScore + scores[i]
ENDFOR
average ← totalScore / 10

If we had a two-player game with two scores we could store these as two variables, score1 and
score2. There would be a problem if we wanted to have hundreds of players though, as we would
need to create a variable for every one of them.

Arrays allow programmers to store a set of values under one identifier. Each value will have an
index number. Index numbers usually start at 0 and this is the case for C, C++, C#, Java and Python.

The pseudocode above will create an array with 10 elements (spaces). Each element will then be
initialised with the values given. A diagram of how this is stored in memory is shown above on the
right. To alter one element, for example the first element, we can use the following code:
scores[0] ← 23

Arrays are often used together with FOR loops to
access them. The code to the right shows how to
print out all the scores. Notice how length(scores) is
used rather than the number 10. This means that if
we add another score the program will still work.

Arrays make it easier to work on each element. We
only need to tell the computer what to do to one
element and we can then use a FOR loop to do the
rest. The example on the right will multiply all the
scores by 100.

More complicated algorithms can be built
with arrays. The example on the right
shows how the average of all the
numbers in the array is found. The
totalScore variable is created outside the
FOR loop. If it were created inside the
loop it would keep on resetting to zero every time the loop repeated.

Arrays - Reading R 20

39Licensed to knole Academy, #10193259

