Sound is input into a computer with a microphone and output from it with a speaker. Sound, unlike say a key stroke, is continuous movement of air and so an analogue signal. Computers need to store things digitally as 1 s and 0 s .

A sound card will contain an analogue-to-digital converter (ADC) to convert the signal from a microphone to digital for the computer. It will have a digital-to-analogue converter (DAC) to convert the computer's digital signal to an analogue one for the speaker.

This is how it works:

1. Start with a sound wave (the line on the right shows 1 second of audio)
2. Now sample the data (here we are taking 4 samples per second - so 4 Hz ) - this is the vertical lines. This
 is known as the sampling rate. We also choose a sample resolution (in this case 2 bits) which is how accurate each sample will be. Notice that because of the low sample resolution we need to round up or down if it doesn't cross a horizontal line at the sample point.


3. The binary to store the right hand graph will be: 10101001.

Using a higher sample rate this time ( 7 Hz ) and higher bit rate ( 3 bits) we get a more accurate representation, but still not perfect.



The binary to store this would be: 101011001100011011011
File size (bits) = sampling rate * sample resolution * seconds

[^0]
[^0]:    A CD uses 16 bits per sample * 44.1 KHz sample rate * 2 channels (left and right) $=16 * 44100 * 2=1411200 \mathrm{bit} / \mathrm{s}$ data rate $=(1411200 / 8) / 1000=176.4$ kilobytes per second

